AES70
Object Model
- an introduction -

Concepts

What's in AES70

- An object-oriented framework for control interfaces that audio devices present to a data network;
- A standardized device object model for controllable devices;
- A rich and extensible repertoire of control class definitions (the AES70 Object Model) that represent the signal processing, control logic, and network connection functions of modern audio devices; a class may be thought of as an API for a particular function or set of functions.
- An application protocol called OCP.1 ("Open Control Protocol 1") that defines command and response formats and sequences for control and monitoring of OCA-compliant devices over IP networks. OCP.1 is defined separately from the Object Model and is not described in this presentation.

What's **not** in AES70

- Audio program transport;
- A programming model for OCA-compliant devices;
- A user interface definition or generation scheme for OCA-compliant devices;
- Standardized semantics for controllable elements (e.g. standard filter shapes);
- Standard device profiles (e.g. "standard mixer", "standard power amp").

AES70 defines the set of APIs a device exposes to the network.

Objects

Categories of Control Objects

Managers Standard housekeeping objects, mostly the same in every device.

Workers Objects that correspond to audio processing control functions.

Agents Devices that provide various control functions or modify the control

command stream, but do not map directly to signal processing elements.

Networks AES70's connection management feature set.

Elements of Control Objects

Properties
 Variables that define the state of the object

Methods
 Operators that change properties and cause actions

Events
 Signals emitted by objects to indicate state changes

Object Number (aka ONo) Unique identifier of object within the device

AES70 control objects are abstractions that define a device's network API. They may or may not correspond one-for-one with software or hardware elements of the device. For example, a master gain control object may in fact control several real gain-setting elements in the device.

Classes

- Templates from which control objects are created.
- Every class is uniquely identified by a **class ID**, a structured identifier used in various ways throughout AES70.
- AES70 classes inherit elements in the standard object-oriented manner. Only simple inheritance is supported.
- The set of OCA classes (aka "AES70 Object Model aka "AES70 Class Tree" aka "OCC") defines AES70 's functional repertoire.
- The object model will evolve over time to accommodate new device types and new manufacturers.
- Object model inheritance rules create a constrained evolution regime that maximizes upward compatibility and ensures graceful evolution through orderly class specialization.
- Object model inheritance rules support the addition of proprietary classes to the class tree in a way that maximizes compatibility with the standard classes

Events

- Event: transient state of an object that can cause it to send one or more event notification messages.
- Events have class-specific types. Each class may have a repertoire of events of various types.
- Event definitions are inherited.
- The most commonly used event is OcaPropertyChanged, an event that causes an object to emit a notification whenever a value of any of its properties changes.
 - OcaPropertyChanged is an event of the root class OcaRoot, and is therefore defined for all classes in the tree.
- Notifications are sent only to subscribing objects.
- Subscriptions are registered with and managed by the Subscription Manager.

AES70 Object Model - summary -

Object Model Overview

Workers	Classes that deal with audio processing
Actuators	Classes that control audio processing
Sensors	Classes that monitor the device
Blocks and Matrices	Classes that define device control and processing groups
Agents	Classes that affect the flow and timing of control
Networks	Connection management classes
Managers	Device housekeeping classes

Workers

OcaActuator	Base class for classes that control audio processing
OcaMute	Signal mute
OcaPolarity	Signal inversion
OcaSwitch	1 of n selector
OcaGain	Simple gain in dB
OcaPanBalance	Pan or balance control
OcaDelay	Signal delay in mSec
OcaDelayExtended	Signal delay in mSec, ft, m
OcaFrequencyActuator	Frequency
OcaFilterClassical	Bessel, Butterworth, etc.
OcaFilterParametric	Peaking or shelving parametric filter
OcaFilterPolynomial	Rational polynomial filter
OcaFilterFIR	FIR specified by coefficients
OcaFilterArbitraryCurve	Magnitude vs freq curve
OcaDynamics	Generalized compressor/expander
OcaDynamicsDetector	Side-chain detector
OcaDynamicsCurve	Dynamics input vs output level curve
OcaSignalGenerator	Multi-waveform signal generator
OcaSignalInput	Device signal input port
OcaSignalOutput	Device signal output port
OcaTemperatureActuator	Temperature parameter
OcaIdentificationActuator	Device identification light or other flag

Actuators, continued	
OcaBasicActuator	Base class for weakly typed actuators
OcaBooleanActuator	Weakly typed actuators
OcaInt8Actuator	
OcaInt16Actuator	
OcaInt32Actuator	
OcaInt64Actuator	
OcaUint8Actuator	
OcaUint16Actuator	
OcaUint32Actuator	
OcaUint64Actuator	
OcaFloat32Actuator	
OcaFloat64Actuator	
OcaStringActuator	
OcaBitStringActuator	

Workers

OcaSensor	Base class for classes that monitor the device	
OcaLevelSensor OcaAudioLevelSensor	Signal level Audio level with standard meter laws	
OcaTimeIntervalSensor	Time interval	
OcaFrequencySensor	Frequency	
OcaTemperatureSensor	Temperature	
OcaIdentificationSensor	Monitors a button push or something	
OcaBasicSensor	Base class for weakly typed sensors for general use	
OcaBooleanSensor	•••	
OcaInt8Sensor		
OcaInt16Sensor		
OcaInt32Sensor		
OcaInt64Sensor		
OcaUint8Sensor	•••	
OcaUint16Sensor		
OcaUint32Sensor		
OcaUint64Sensor	•••	
OcaFloat32Sensor		
OcaFloat64Sensor		
OcaStringSensor		
OcaBitStringSensor		

10

Workers

Blocks and Matrices	Classes that allow grouping of device functions
OcaBlock	Container for Workers, Agents, and Networks that defines a related set of device functions
OcaBlockFactory	Constructor for OcaBlock objects; to be used with dynamically-reconfigurable DSP devices
OcaMatrix	Specialized container for 2-dimensional arrays of processing elements; superset of conventional gain matrix.
Networks	Connection management classes

Networks		Connection management classes	
	OcaApplicationNetwork	Abstract base class for other network classes	
	OcaControlNetwork	Application network for transport of control traffic (e.g. an AES70 network)	
	OcaMediaTransportNetwork	Application network for transport of media content (e.g. an AES67 network)	

AES70 Device Model

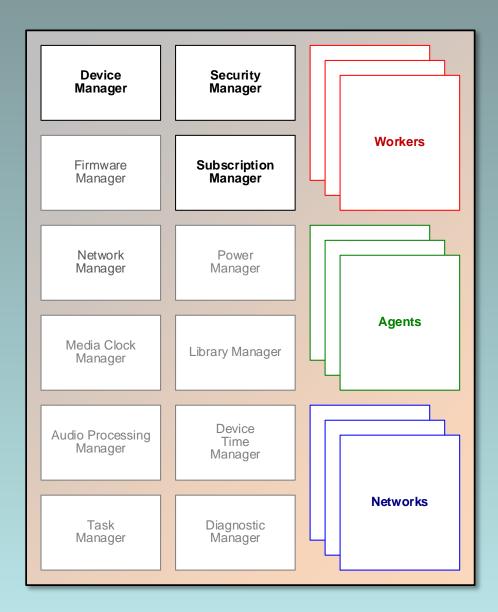
The AES70 Device Model is a deployment of objects defined by classes in the AES70 Object Model. It defines the basic object configuration of all AES70-compliant devices. In practice, other objects will be instantiated from the Object Model to represent the specific functions of each device.

01

Device Model

REQUIRED MANAGERS

Device Manager


Manages information relevant to the whole device.

Security Manager

Manages security keys.

Subscription Manager

Manages event subscriptions.

OPTIONAL MANAGERS

Power Manager

Manages power supplies and batteries.

Firmware Manager

Manages firmware versions and, optionally, updates.

Network Manager

Manages connection(s) to network(s).

Media Clock Manager

Manages media clocks.

Library Manager

Manages stored parameter settings.

Audio Processing Manager

Holds global signal processing parameters.

Power Manager

Manages power supplies and batteries.

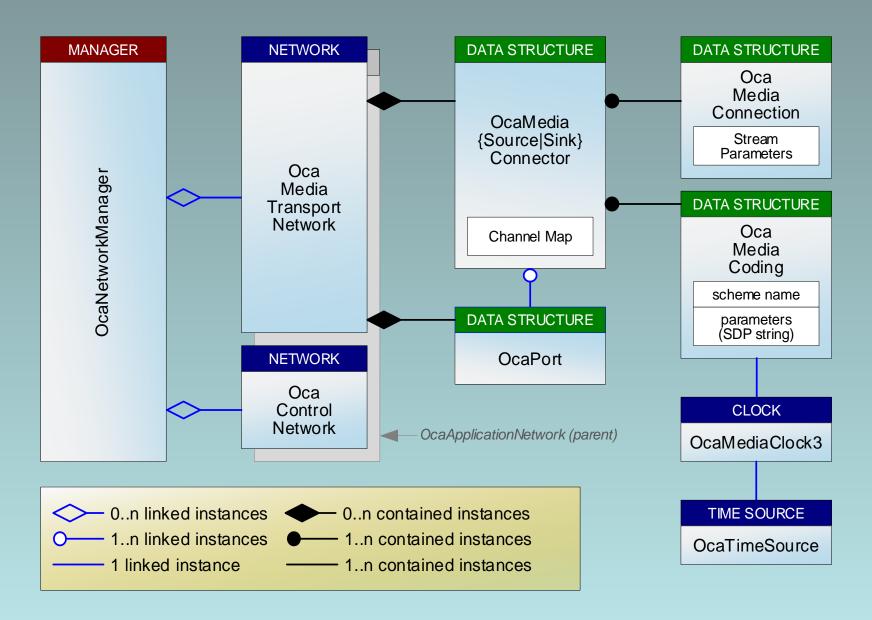
Device Time Manager

Manages time reference objects.

Task Manager

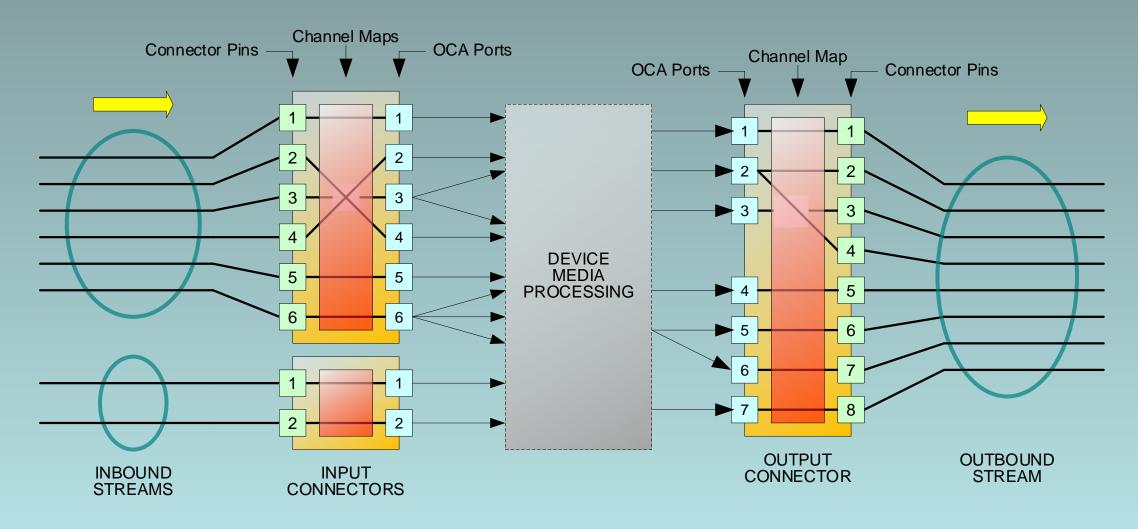
Manages stored processing sequences.

Diagnostic Manager


Offers features to help installation and setup.

AES70 Connection Management 3 (CM3)

AES70 Connection Management 3, or CM3, is a set of classes defined in the AES70 Object Model that support the use of AES70 for managing stream data connections.


14

CM3 object model (part of AES70 Object Model)

- A device has Application Network objects
 - An OcaControlNetwork object for AES70 traffic
 - One or more OcaMediaTransportNetwork objects for stream traffic
 - Each OcaMediaTransportNetwork object has one or more OcaMediaConnector control blocks that describe stream connection endpoints.
 - Each OcaMediaConnector contains
 - » an OcaMediaConnection control block that contains
 - » connection parameters
 - » a secure-connection flag
 - » the Channel Map that associates stream channels with device channels
 - » the connector's Alignment Gain value
 - » an OcaMediaCoding control block that
 - » identifies and parameterizes the codec being used
 - » links to an OcaMediaClock3 clocking object
 - » the OcaMediaClock3 object links to an OcaTimeSource object

CM3 in action

AES70 Resources

Sites

• https://ocaalliance.github.io/ aka the "AES70 Techsite" Free public technical resources for AES70 developers.

Implementations and tools available through the Techsite

- http://ocaalliance.com/
 The usual sort of public website.
- OCA Microdemo
 A free AES70 implementation, including hardware designs for a small demo PCB.
 Unencumbered, fully usable for commercial purposes.
- Focusrite Rednet OCA Virtual Device
 Windows executable that simulates an AES70 device.
- oca.js JavaScript library
 Javascript library that supports AES70. For building web-based AES70 device controllers.
- OCA Wireshark plugin
 This plugin allows analyzing AES70 network traffic using Wireshark, the popular free network protocol analyzer.

Information on the Techsite

AES143 Presentations

Slides from two presentations, "How to Make an AES70 Device", and "How to Make an AES70 Controller", originally given at AES 143 in 2017 October. Audio recordings of these presentations is available through the AES website.

Commercial AES70 Implementation

• Bosch AES70 Reference Implementation

Fully engineered, commercial-grade AES70 development kit. Not free. Licensable from Bosch Communications. Jeff Berryman has for further information.

OCA Alliance resources

 Additional resources are available to OCA Alliance member companies. Basic membership costs \$1500 per year. Contact Jeff or the OCA Alliance business manager Tina Lipscomb.